

NOx/VOC QA workshop 2023; Online – April, 17th - 19th 2023

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No $654109\ and\ 739530$

Activities

Management and coordination

- Monthly management meetings
- Annual CiGas Community workshop
- Participation in RIComm and CF-Meetings; other working groups

Links with associated communities

- Standards Committee CEN WG13: "Ambient air Ozone precursors and benzene"
- TOARII

CiGas

- WMO-GAW: WCC for VOC
- MetClimVOC
- CAMS-21a-2nd phase; RI-URBANS; ATMO-ACCESS; EQUIPEX OBS4CLIM

Consultancy for NMHCs Trainings for NMHCs measurement and

Trainings for NMHCs measurement and data evaluation (planned 2023) Ready for NMHC working standard and target gas checks

NATIONAL PHYSICAL LABORATORY Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

NPL PRIMARY REFERENCE MATERIAL

Cylinder Number: D933592

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CUSTOMER:	Forschungszentrum Jülich GmbH
ADDRESS:	Institut IEK-8: Troposphäre, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany

CALIBRATION DATE: 05 May 2021

AMOUNT FRACTIONS:

Component	Amount fraction / (nmol/mol)
Toluene	3.93 ± 0.12
(+/-)-α-pinene	4.17 ± 0.21
(+)-3-carene	3.93 ± 0.20
R-(+)-limonene	3.81 ± 0.12
1,8-cineole	4.08 ± 0.21
Nitrogen	Balance

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

METHODS:	Preparation: gravimetry; Analysis: gas chromatography (FID)
TRACEABILITY:	The values on this certificate are traceable to NPL Primary Standards
EXPIRY:	Certificate valid for 1 year from the date of issue
PRESSURE:	Fill pressure: 100 bar; Minimum utilisation pressure: 10 bar
STORAGE:	No special precautions are required
HANDLING:	Refer to ISO 16664
OUTLET:	DIN 477 No. 1 valve
INTENDED USE:	Calibration standard

CiGas

U

Ca

NPL PRIMARY REFERENCE MATERIAL

Cylinder Number: D933529

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CUSTOMER:	Forschungszentrum Jülich GmbH			
ADDRESS:	Institut IEK-8: Troposphäre, Wilhelm-Johnen-Strasse,			

Institut IEK-8: Troposphäre, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany

CALIBRATION DATE: 08 December 2020

AMOUNT FRACTIONS:

Component	Amou	Amount fraction		Component	Amount fraction		
Component	/ (ni	nol/ı	nol)	Component	/ (nmol/mol)		
Ethane	4.24	±	0.13	2-methylpentane	4.39	±	0.09
Ethene	4.15	±	0.09	n-hexane	4.39	±	0.09
Propane	4.18	±	0.09	Isoprene	4.37	±	0.09
Propene	4.15	±	0.09	n-heptane	4.40	±	0.09
2-methylpropane	4.26	±	0.11	Benzene	3.72	±	0.08
n-butane	4.22	±	0.09	2,2,4-trimethylpentane	4.13	±	0.09
Ethyne	4.37	±	0.22	n-octane	4.14	±	0.09
trans-but-2-ene	4.23	±	0.09	Toluene	3.61	±	0.10
But-1-ene	4.21	±	0.09	Ethylbenzene	3.91	±	0.10
cis-but-2-ene	4.22	±	0.09	m-xylene + p -xylene	7.60	±	0.20
2-methylbutane	4.16	±	0.09	o-xylene	3.74	±	0.10
n-pentane	4.18	±	0.09	1,3,5-trimethylbenzene	3.80	±	0.10
1,3-butadiene	4.27	±	0.09	1,2,4-trimethylbenzene	3.83	±	0.10
trans-pent-2-ene	4.20	±	0.09	1,2,3-trimethylbenzene	3.80	±	0.10
Pent-1-ene	4.27	±	0.09	Nitrogen	В	aland	e

The reported expanded uncertainties are based on standard uncertainties multiplied by a coverage factor k = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

METHODS:	Preparation: gravimetry; Analysis: gas chromatography (FID)
RACEABILITY:	The values on this certificate are traceable to NPL Primary Standards
EXPIRY:	Certificate valid for 5 years from the date of issue
PRESSURE:	Fill pressure: 100 bar; Minimum utilisation pressure: 10 bar
STORAGE:	No special precautions are required
IANDLING:	Refer to ISO 16664
DUTLET:	DIN 477 No. 1 valve
NTENDED USE:	Calibration standard

2021030009-1 Reference: Signed: Name: Checked by:

1 ~ UL Dr D R Worton edforrow-A Date of issue: 22 March 2021

(Authorised Signatory) (on behalf of NPLML)

Page 1 of 1

Reference:	2021030009-2
Signed:	Enlord
Name:	Dr P J Brewer
Checked by:	fred for ow-A

Date of issue: 07 May 2021

(Authorised Signatory) (on behalf of NPLML)

Page 1 of 1

Measurement performance monitoring

Preparation for round-robins

Measurement guidelines

Science & Technology

Home ACTRIS Centre For Reactive Trace Gases In Situ Measurements (CiGas)

HOME SCIENCE & TECHNOLOGY

LOGY NATIONAL FACILITIES

PARTNERS & USERS ANNOUNCEMENTS & RESOURCES

Publications & documents

Standard Operation Procedures

For NOx and VOC can be found here SOP for NOx and VOC

Deliverable 3.17. Updated Measurement Guideline for NOx and VOCs

A©TRiS

Stefan Reimann (EMPA), Robert Wegener (FZJ), Anja Claude (DWD), Stephan Sauvage (CNRS)

	Work package no	WP3
	Deliverable no.	D3.17. Updated Measurement Guideline for NOx and VOCs
	Lead beneficiary	EMPA
	Deliverable type	R (Document, report)
		DEC (Websites, patent fillings, videos, etc.)
CiGas		

op 2023; Online – April, 17th - 19th 2023

Data review

@VOC@

footprints

sabine.eckhardt@nilu.no

 4days
 CV0001G
 Footprint
 regional
 FIRST
 -50
 PREV
 NEXT
 +50
 LAST
 2/306:2019-03-02

 SUBMIT

Activities

Labelling

- Develop and establish workflows, communication and management
- Contribution to the assessment for NMHCs
- Reporting for labelling step 1a

Preparation for auditing pilote NFs

- Provision of gas standards
- On site audit

s-b-s-Inter comparisions

Scientific developments

- Method developments and QA procedures for CIMS & TD-GC
- Low cost sensor applications
- Airborne applications of CIMS

Implementation Status (FZJ)

VOCUS

TD-GC-FID/MS (Gerstel TDS-G; CIS) PTR-TOF-MS 8000 Liquid Calibration Unit Certified laboratory standards (NPL)

Diffusion sources

Implementation Status (FZJ)

System for automated Canister and sample tube analysis connected to TD-GC-FID/MS (Markes, Agilent) On-line TD-GC-FID/MS (Markes, Agilent) TD-GC-MS (Markes, Agilent) Gas mixing and continuous calibration gas generation

Calibration flow tube (CACTUS)

Implementation Plans (FZJ)

Upcoming:

- Gas mixing & cylinder filling \rightarrow Working standard provision
- Target gas filling \rightarrow Compressor
- PTR-TOF-MS (FUSION)
- HCHO TILDAS Instrument
- Hands-on training center + s-b-s-intercomparison facility connected to SAPHIR and JULIAC

Implementation status (Overview)

Activity	NMHCs	Implementation y	/ear
Consultancy	anthropogenic	Available	
	biogenic	20	24
Training	anthropogenic	2023	
	biogenic	20)24
Measurement Guidelines	anthropogenic	Available	
	(update)	2023	
	biogenic	20	24
Scale available at NFs	both	Available	
Working standard checks	anthropogenic	Available	
	biogenic	20	24
Measurement performance monitoring	anthropogenic	2023	
	biogenic		2025
Data review	anthropogenic	Available	
	biogenic	20)24
Analytical instrument compatibility test	both		2025
Audits	anthropogenic	2023	
	biogenic	20	24
ACTRIS approved new technologies	both		2025
CiGas	- 190X/ YOC QA WORKSHOP 2023, OHIINE - APHI, 11 - 19-	2023	

Challenges

NO:

Traceable gas standard available from CCL

NO level span three orders of magnitude (!) at different ACTRIS sites

Most Sensitive CL reference instrument will be purchased (April 2023)

ACTRIS CiGas

Challenges

NO_2

Traceable gas standard available from CCL

NO level CLD Measured after conversion into NO is prone to interferences

Setup of:

CiGas

Spectroscopic (direct!) reference method for direct NO2 measurement onsite (mobile !)

DOAS instruments operating.

First deployment at campaign at Hohenpeissenberg shows excellent performance

DOAS spectrometers

Challenges

NO₂

No traceable NO_2 gas standard available NO_2 for calibration is produced from NO and ozone

Setup of:

CiGas

Mobile calibration stand with a gas phase titration and humidification device and NO / NO_2 and CO_2 measurements for checking NF devices by measurements on site. Calibration stand set up., will be replicated in 2023.

Mobile Calibration Unit

The rack will also contain ozone and water measurements allow to check for interferences at the NFs

SAPHIR chamber with JULIAC tower

All instruments are routinely operated in parallel at ambient concentrations at SAPHIR to check for potential problems, such as interference.

Here, different techniques (CAPS, TDL, DOAD, CL) are compared to each other.

A new lab building will be setup close to the chamber to host NOx and VOC during intercomparison

Implementation Status (IMT)

VOCUS 2023-2024

Upcoming:

Available:

CiGas

- PTR-QiToF-MS Ionicon
- PTRMS Kore
- TD-GC FID/FID; TD-GC-FID/MS (offline & online)
- Liquid Calibration Unit; Gas Calibration Unit
- Permeation system
- Target gas cylinder filling system
- Multi-gas generation systems & intercomparison platform
- + Certified laboratory standards (NPL, NIST, upcoming VSL)

CiGas

Implementation Status (DWD)

 In ACTRIS since 2011: involved in the development of QA/QC measures, measurement guidelines and organisation of intercomparison campaigns (side-by-side and RR)

Monitoring at HPB:

- VOC (>50 NMHC, BVOC, OVOC; 12h intervals; 3 GC systems):
 - TD-GC-FID (C2-C8 NMHCs),
 - TD-GC-MC/FID (biogenic VOCs),
 - TD-GC-FID/FID(/MS) (NMHCs+OVOCs)
 - PTR-TOF-MS (2023)
- CO (cavity + fluorescence)
- O₃ (UV-absorption)
- NO (CLD)
- NO2 (CLD-PLC/BLC + CAPS)
- NOy (gold converter CLD + TD-CAPS)
- SO₂ (fluorescence)
- CO₂, CH₄, N₂O (ICOS cavity absorption)
- OH, H₂SO₄, K(OH), ROx (CIMS)

FONA

GAW measurement facility for reactive inorganic trace gases and aerosols

CiGas-HO-DC Meeting – Jan., 16th and 17th , 2023

Measurement of NMHCs by GC

On-Line sampling

- Inlet location >2 m above the building and >5 m above ground
- Sample path including inlet line and filters inert to NMHCs \rightarrow surface passivated steel, glass
- Controlled sampling flow
- Removal of water, ozone, carbon dioxides and particles
- Sample pre-concentration (low temperature adsorption)
- Transfer of the analyte to GC (by carrier gas flow, high temp., potentially 2nd focussing trap)
- FID and/or MS detection

Off-line sampling (additional requirements with respect to on-line sampling)

- Passivated or electropolished stainless steel canisters
- Glass flasks

CiGas

• Storage times max. 30 days

Data quality objectives for NMHCs measured by GC

Table 3 Data quality objectives (DQOs) for the measurements of NMHCs in whole air compressed test gases (inter-laboratory compatibility) expressed as the expanded combined uncertainty (k=2) and the repeatability (k=1; standard deviation). The basic station performance requirements correspond to the former and weaker DQOs of GAW Report 171 (2006).

	GAW basic	GAW basic	ACTRIS target	ACTRIS target
	performance	performance	performance	performance
	expanded	repeatability	expanded	repeatability
	combined		combined	
	uncertainty		uncertainty	
Alkanes	10%	5%	5%	2%
alkenes incl. isoprene	20%	10%	5%	2%
Alkynes	15%	5%	5%	2%
Aromatics	15%	10%	5%	2%
mole fraction (1)	10/15/20			
<100 pmol/mol	pmol/mol	5/10 pmol/mol	5 pmol/mol	2 pmol/mol
⁽¹⁾ For mole fractions below 1	00 pmol/mol, the DC	O are expressed in	pmol/mol, referenc	e is the above stated

relative value at 100pmol/mol e.g. for alkanes basic performance 10 pmol/mol.

NMHC-Gas Standard Requirements

The Central Calibration Laboratory (CCL) maintains the primary standard that defines the calibration scale. \rightarrow NPL (UK)

Standard requirements for ACTRIS-NFs:

CiGas

1. (secondary) Laboratory standard: multi-component standard (synthetic mixture), produced and certified by the CCL.

2. (tertiary) Working standards: Cover most (ideally all) components measured and are used for regular calibration. WS can be other-certified or custom-made synthetic mixtures, or compressed whole air, calibrated by CiGas.

3. A target gas mixture: Compressed whole air / synthetic mixture calibrated by CiGas.

The target gas is used to check the assigned values of the calibration mixtures and the calibration process itself, and is treated as an air sample with unknown amount fraction. Monitoring the target gas concentrations yields information about the performance of the instrument, drifts of the laboratory standard, and potential instrument problems.

System	Lab. Standard	Working Standard	Blank	Target gas	Stand. Addittion
GC-FID	2/year*	2/month*	1/week	1/month*	1/year*
GC-MS	2/year*	Every 2-4 samples	1/week	1/month*	1/year*
					*) 3-5 replica
	NOx/VOC OA workshop 2023: Online – April, 17 th - 19 th 2023				

Recommended frequencies for standard, blank and target gas measurements