

A C T R I S CCRES

Tackling Aliasing in Doppler Radar Data: A Single-band and Dual-band De-aliasing Strategy

M. Tolentino^{1,2}, L. Pfitzenmaier ³, M.J. Granados-Muñoz^{1,2}, J.A. Bravo-Aranda^{1,2} E. O'Connor⁴, T. Siipola⁴, S. Tukiainen⁴

- 1. Andalusian Institute for Earth System Research, Granada, Spain
- 2. Department of Applied Physics, University of Granada, Spain
- 3. Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
- 4. Finnish Meteorological Institute, Helsinki, Finland

Outline

- **1. Description of the AGORA station**
- 2. Understanding Aliasing in Doppler Cloud Radars
- 3. Methodology (De-aliasing)
 - a) Mean velocity reference estimation.
 - Interactive bottom-up
 - Interpolated
 - External band
 - b) Interpolated algorithm (IPA) for single band (SB) and dual-band (DB) mode
 - c) Iterative bottom-up algorithm (IBUA)
 - d) Time continuity correction
- 4. Preliminary results
 - a) Case Study: De-aliasing of stratiform clouds
 - b) Case Study: De-aliasing of convective clouds
- 5. Validation
- 6. Concluding Remarks
- 7. Next steps

AGORA ACTRIS CCRES station (Granada Station)

Available in CLOUDNET

Scanning capability

RPG Dual frequency cloud radar (35,94GHz)

Sky camera Disdrometer Parsivel OTT² RPG 94-GHz Cloud radar

AGORA: Andalusian Global ObseRvatory of the Atmosphere

3

Case study for W-band (19/12/2024) 2024-12-19T07:00:28 8 Height, [m] 4 7 city, [m/s] 6 6 Vmin Vmax 2 5 Range, [km] ل W-band Doppler Velo 4 3 Height, Total Height, Total Height, He 2 1 -4 07:00 07:01 07:01 07:02 07:02 07:03 07:03 07:04 07:04 07:05 -7.5 -5.0 -2.5 2.5 7.5 5.0 0.0 Time, [UTC] Doppler Velocity, [m/s]

Understanding Aliasing in Doppler Cloud Radars

Mean velocity reference estimation

Iterative method: use the mean Doppler velocity of the bins below (in range) as an initial estimate for the Doppler velocity of the current bin

Interpolated method: fill in the aliased regions by interpolating the mean Doppler velocity from nearby non-aliased regions using nearest neighbor interpolation

External method: use the mean Doppler velocity profile from an external band with lower frequency as an initial estimate for the Doppler velocity

Methodology (De-aliasing)

ΪTR

Methodology (De-aliasing)

Iterative bottom-up algorithm (IBUA) by Tuomas Siipola (CLU)

Mean computation (Vectorized phase-based estimation)

tau = 2 * np. pi $a = np. linspace(0, tau, n_bins, endpoint = False)$ b = np. sum(spec * np. sin(a), axis = 1)c = np. sum(spec * np. cos(a), axis = 1)

 $mean = (np.atan2(b,c) \% tau) / tau * n_bins$

Fix aliasing within chirp sequence

Shift on the circular mean at each range

Align chirp sequence

- 1. Assume not aliased at ground
- 2. Align means of the last and first ranges of adjoining chirp sequence (n Vny)

Time continuity correction

SB mode may need time continuity check to dealiase convective clouds

Inaccurate de-aliasing: Jumps of "n x Vn", where $n = 0, \pm 1, \pm 2$

Correction:

1) The corrected mean Doppler velocity is chosen so that the difference between the current velocity *Vm* and the reference *Vref* is minimized by adding or subtracting multiples of the Nyquist velocity.

2) If the velocity change exceeds one Nyquist velocity, use the dealiased Doppler velocity profile from the previous time step as the reference (*Vref*)

Case Study: De-aliasing under low-complexity conditions (stratiform) clouds W-band (NEBULA W) 19/12/2024

CCRES/CLU Spring Workshop, online, 19-20 May 2025

for stratiform clouds

CTRIS

Validation *DDV*_{*Ka*-*W*}: Methodology

(m/s), SB - IPA

DDV

DDV (m/s), DB - IPA

2.6

1.4

0.2

2.6

0.2

DDV_{Ka-W} for each original profile and each method

9 days validation (Granada)

Concluding Remarks

- 1. This work has successfully assessed four dealiasing algorithms:
 - Spatio-temporal continuity check
 - Case studies: stratiform and convective
- 2. Accurate dealiasing achieved with all three single-band methods for stratiform clouds.
- 3. SB mode algorithms performs quite well (IBUA is the fastest one)
- 4. In convective clouds, time continuity check improve de-aliasing performance
- 5. These are cases where the Ka-band becomes essential.
- 6. Deep convective cloud: the use of Ka-band doppler velocity spectra becomes essential

Next steps

- Apply time continuity check to SB IBUA approach (CLU)
- Standard formulation to retrieve polarimetric variables
- Retrieving of spectral correlation coefficient and LDR (comparable to RPG LV1)
- Moments calculation

Thank you !

Backup slides

Coherence in Range:

Considerations: works quite well for most cases but can give bad results when data have **gaps** (attenuation or multilayer) or **two regimes**.

Consequences: Some parts of the spectra are more than one nyquist shifted in the wrong direction.

Solution: Baseline (something close to the truth): Ka-band or the closest profile with no folding or **correctly** de-aliased

Coherence in Range:

Two

Considerations: works quite well for most cases but can give bad results when data have **gaps** (attenuation or multilayer) or **two regimes**.

Consequences: Some parts of the spectra are more than one nyquist shifted in the wrong direction.

Solution: Baseline (something close to the truth): Ka-band or the closest profile with no folding or correctly de-aliased

Considerations:

Two regimes:

Difficult case

Consequences: Solution:

Ka-band as reference can also cause some minor issues due to better sensibility

Possible solution: range coherence verification (Difficult to know each part of the spectra is the truth)

In general, Ka-band gives much better results in complicated cases

