

Standard Operating Procedures

Doppler Cloud Radar

This document describes the **Standard Operating Procedures (SOPs)** that must be applied to all Doppler Cloud Radars contributing measurements to the ACTRIS Cloud Remote Sensing Data Centre.

I. Site requirements

1	Operation area : environment surrounding the instrument	Surface: stable, solid and easily accessible installation area. Open view within a cone of specified elevation angle from zenith. If scanning : open view to horizon.
2	Specific points of attention	Reflections on nearby objects may damage the radar. Radar field of view must be clear. In addition, local regulations for the use of the RF spectrum should be reviewed before installing an active instrument.
3	Comply with local Safety and Security Rules	The RF frequency commonly used in cloud radars (above 10 GHz) is absorbed at the skin surface, with very little of the energy penetrating into the underlying tissues.
		Exposure to RF fields above 10 GHz at power densities over 1000 W/m2 are known to produce adverse health effects, such as eye cataracts and skin burns. Commonly used cloud radars operate with a much lower power density (in the order of mW/m2), hence they should represent no danger. However, we recommend to check the recommendations given by the radar manufacturer, and the WHO:

	https://www.who.int/news-room/q-a- detail/radiation-radar

II. Operation modes

1	Stability	Keep the instrument always on power. This ensures permanent temperature and humidity stabilization.
2	Scanning modes	-
3	Ensure collection of data	-
4	Ensure collection metadata and	-
	housekeeping data	
5	Continuity	24/7
6	Ensure accurate system clock and location	Use UTC if possible (no changing with Summer
		Time), use ntpd or GPS reference
7	Ancillary measurements to be performed	Disdrometer, weather station, video camera
8	Recommendations to maximize good	A device to dry the radome after precipitation
	working order of the instrument	events is highly recommended to maximize
		uptime.

III. Monitoring of system parameters

-		
1		Objective : Quasi NRT
	Instrument status dashboard(s) and (automatic) alert systems (applied on data and housekeeping data)	HKD : radar box temperature and humidity, radartransmittedpower,blowerON/OFF,Geophysical data : min/max of reflectivity orDopplervelocitySystem / data logger : free disk space
2	Housekeeping data threshold and	To be discussed with manufacturer, different for
	available variability	each cloud radar
3	Web sites to access QLs	2D plot : altitude versus time , colorbar = reflectivity
		or Doppler velocity
4	Visual inspection of instrument (e.g. remotely controlled camera)	advised

IV. Data types and database connection

	- I I I I I I I I I I I I I I I I I I I	A
1	Temporal resolution of the data	At least one profile every 30 seconds
2	Temporal resolution of the metadata	Similar to resolution of data
3	Range resolution of the data	Minimum 60 metres
4	Maximum range	Site dependent (contact the CF)
5		Store all raw data (Raw received power, Emitted
	Raw data and metadata flow (including	power, RCS calibration, Z calibration, temperature,
	housekeeping data) implementation to	voltage, etc)
	the data center	Data to be stored in NetCDF format following CF-
		1.6. conventions

1	/. Calibration		
1	Retrieval of Calibration Parameters	 Absolute Calibration with targets on masts: Calibration for RCS and radar eq. reflectivity retrievals. Absolute Calibration with targets on drone: Calibration for RCS and radar eq. reflectivity retrievals. Absolute Calibration by transfer: Calibration for RCS and radar eq. reflectivity retrievals. Distance Calibration: Calibration of the distance measurement. Antenna pattern characterization: Antenna pattern retrieval to calibrate the positioning and gain effects introduced by antenna pointing and parallax using UAVs or targets on masts. 	
2	Characterization of measurement uncertainties	 Reflectivity Uncertainty Sources: Calibration uncertainty, assessed during instrument calibration. Calibration correction factors used in retrievals, for ex. when measuring radar transmitted power. To be indicated by the manufacturer. Signal to noise ratio Target location uncertainty sources: Distance estimation uncertainty Scanner angles uncertainty External Uncertainty Sources: Dielectric factor of cloud droplets/ice crystals. Depends on the data treatment protocol. Attenuation from clouds and rain Attenuation in case of wet radome 	
3	Calibration schedule (automatic and hands-on)	Automatic verification every rain event. Hands-on calibration as frequently as means allow (~ once per year)	
4	Azimuth and elevation pointing accuracy	Study on the scanner angular accuracy and repeatability.	
5	Detecting systematic errors during instrument operation	 Absolute calibration tracking comparing radar and spectro pluviometer measurements during rain Absolute calibration tracking using a reference reflector on a mast Antenna alignment and absolute calibration check with automated UAV flights. Measurements of transmitted power and of a noise source in the receiver-end to track stability of the radar components gain 	

VI. Maintenance schedule

1	Preventive maintenance	Radome maintenance as indicated by the
		manufacturer.
2	Likely component replacements	Amplifiers degrade gradually during operation. After some years they may need replacement

		depending on the radar hardware and operating conditions.
3	Likely software issues, software upgrades	Version numbering is crucial.
4	Preventive maintenance	Radome maintenance as indicated by the manufacturer.