

Metrology for Climate Relevant Volatile Organic Compounds

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

New and classical techniques to measure formaldehyde – a laboratory intercomparison

Thérèse Salameh¹, E. Stratigou¹, E. Tison¹, S. Dusanter¹, V. Gaudion¹, M. Jamar¹, R. Tillmann², F. Rohrer², B. Winter², T. Vera³, A Muñoz³, Audrey Grandjean^{4,5}, F. Bachelier⁶, V. Daele⁶

¹IMT Nord Europe, France; ²Forschungszentrum Jülich GmbH, Germany; ³EUPHORE Lab, Fundación CEAM, Spain; ⁴ICPEES, France; ⁵Chromatotec, France; ⁶CNRS – ICARE, France

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Introduction: Formaldehyde

MetClin

Routine measurements of formaldehyde in regulatory networks within Europe (EMEP) and USA (EPA Compendium Method TO 11A) rely on sampling with DNPH (2,4-Dinitrophenylhydrazine)-impregnated silica cartridges, followed by analysis with HPLC (High-performance liquid chromatography)

Introduction

3

Objectives of the intercomparison: at CiGas IMT NE Douai site – 30/05 -> 08/06 2022

Evaluation of the metrological performance of measurement

techniques: repeatability, limit of detection, linearity, potential drift, etc.

Determine advantages/drawbacks of the techniques

Develop recommendations about best practices

ACTRIS Topical Centre for Reactive Trace Gases in Situ Measurements

What is ACTRIS? https://actris.eu/

The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) is the pan-European research infrastructure (RI) producing high-quality data and information on short-lived atmospheric constituents and on the processes leading to the variability of these constituents in natural and controlled atmospheres.

Set-up of the intercomparison: **10 instruments => 7 techniques**

Generation: from a cylinder (5.2 ± 0.26) µmol/mol) or from a permeation system

or Cylinder

imVOC

- Different levels: 2-17nmol/mol
- 1 level: RH=60%
- WE: Ambient
- w/ & w/o O_3 Flow 10 L min⁻¹ Zero air VDM generator Flow ~30 L min⁻¹ Mixing manifold Chamber Flow 10 L min⁻¹ Water bath at Ambient Temperature 35° *Certified mixture: VSL => Netherland's National Metrology Institute Flow 10 L min⁻¹ Certified permeator tubes: METAS => Swiss National Metrology Organization Permacal

Set-up of the intercomparison 10 instruments => 7 techniques

MetClim

MetClim VC

Intercomparison: overview of the instruments & sampling information

Technique	Calibration standard and method	Sampling line from the manifold info	Additional materials/info	Total flow arriving to the instrument (L min ⁻¹)	LOD (pmol/mol)	Time resolutior (sec)	
Hantzsch fluorimetry 1	Liquid calibration (external)	Teflon tube, L=1.5 m , ID=1/4''	-	1.00	50	90	
Microfluidic Hantzsch fluorimetry (microF)	Permeation tube (external)	Teflon, L=1.5 m, ID=1.5 mm (1/8") + L=0.8	particle filter (internal)	0.02	1000	10	
DNPH 1	Liquid calibration	PTFE, L=1.5 m, OD=1/4", ID=4 mm	-	1.00	-	3600	
Hantzsch fluorimetry 2	Liquid calibration (external)	PFA, L=3 m, ID=4 mm	-	1.00	33	5	
Hantzsch fluorimetry 3	Liquid calibration (external)	PTFE, L=1.5 m, OD=1/4", ID=4 mm	-	0.90	-	60	
IR Spectroscopy	Cylinder, dilution multipoint	Sulfinert, L=1.5 m, ID=2.159 mm	stainless steel 2μm filter	0.15	300-3500	60	
DNPH 2	Liquid calibration	Sulfinert, L=~1.5 m, ID=4.575 mm	-	1.00	43	3600	
PTR-MS	Cylinder, dilution & RH multipoint	Silcosteel, L=~1.5 m, ID=4.575 mm	Heated lines: ~40oC	0.2+3.0	1000-1700	3600	
CRDS	Calibration standard and method factory default	PFA, L=2 m, ID=4 mm	particle filter	0.30	500 (5min)	120	

MetClimVOC

Date	Time start (LT)	Duration	Time end (LT)	Synthetic zero air cylinder	Zero generator	Cylinder HCHO	Permacal	Ambient air	OZONE (nmol/ mol)	Theoretical amount fraction (nmol/mol)
01-Jun-22	8:00	1 hour	9:00	x						0.00
	9:00	1 hour	10:00		x					0.00
	10:00	3 hours	13:00			x				2.65
	13:00	1 hour	14:00		x					0.00
	14:00	3 hours	17:00			x				5.41
	17.00		08:00 of		x					0.00
	17:00		02/06							
	8:00	3 hours	11:00			x				7.59
2	11:00	1 hour	12:00		x					0.00
É	12:00	3 hours	15:00			x				16.64
02-Jun-22	15:00	3 hours	18:00			x				5.41
	18:00		08:00 of 03/06		x					0.00
			03/00							
~	8:00	3 hours	11:00				x			16.66
03-Jun-22	11:00	1 hour	12:00		x					0.00
-Ju	12:00	3 hours	15:00				x			11.21
03	15:00	1 hour	16:00		x					0.00
	10100	1	10.00		~					0.00
04-05-06 juin 22		8:00						x		0.00
07-Jun-22	8:00	2 hours	10:00		×					0.00
	10:00	3 hours	13:00			x			45	7.31
	13:00	1 hour	14h30		x					0.00
	14:30	3 hours	17:30			x				7.59
	17:30		End		x					0.00

MetClim

Intercomparison results : Original time resolution generation with HCHO cylinder at 60% RH

MetClin

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 1σ. microF data corrected with DNPH data

Intercomparison results : Original time resolution – generation with Permacal at 60% RH

MetClin

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 1σ. microF data MetClimVOC corrected with DNPH data

Intercomparison results: Original time resolution – Ambient air

Timeseries of original time resolution during the different days of experiments in manifold. microF data corrected with DNPH data

MetClimVOC

19.04.2023 11

Intercomparison results: Original time resolution – w & w/o O_3 at 60% RH

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 1σ. microF data corrected with DNPH data

Intercomparison results : Original time resolution: response time & memory effect

MetClimVOC

MetClin

Correlations of DNPH (ref. technique) with theoretical values, and correlations of techniques with ref. technique. Symbols correspond to the respective technique, color coding of symbols corresponds to the date, color coding of the regression lines correspond to each technique. Error bars represent 1 σ . microF data corrected with DNPH data

Conclusions & perspectives

- > Evaluation of many online and off-line techniques for formaldehyde measurements at nmol/mol levels
- > Stable generation of formaldehyde from 2 to 17 nmol/mol at 60% RH regardless the generation way (cylinder; Permacal)
- > DNPH, Hantzsch-fluorimetry-based instruments and CRDS -based instrument: more robust for measuring formaldehyde. Good results with microF after correction
- \succ IR-spectrometry-based instrument not suitable for measuring low amount fractions; PTR-MS: overestimation of the HCHO amount fractions.
- > Possible losses of < 4-7% of HCHO under typical ozone conditions which is inside uncertainties
- Discrepancies between instruments to be addressed (impact of water vapor levels, internal) calibrations especially for Hantzchs techniques, lack of a SI traceable calibration standard, etc.) => QA/QC measures are crucial to provide high quality formaldehyde measurements for outdoor and indoor ambient measurements

Metrology for Climate Relevant Volatile Organic Compounds

Thérèse Salameh (therese.salameh@imt-nord-europe.fr)

Thank you for your attention

For more information, visit

www.metclimvoc.eu

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States