New and classical techniques to measure formaldehyde a laboratory intercomparison

Thérèse Salameh ${ }^{1}$, E. Stratigou ${ }^{1}$, E. Tison¹, S. Dusanter¹, V. Gaudion¹, M. Jamar', R. Tillmann², F. Rohrer², B. Winter², T. Vera³, A Muñoz³, Audrey Grandjean ${ }^{4.5}$, F. Bachelier ${ }^{6}$, V. Daele ${ }^{6}$

${ }^{1}$ IMT Nord Europe, France; ${ }^{2}$ Forschungszentrum Jülich GmbH, Germany; ${ }^{3}$ EUPHORE Lab, Fundación CEAM, Spain; ${ }^{4}$ ICPEES, France; ${ }^{5}$ Chromatotec, France; ${ }^{6}$ CNRS - ICARE, France
g Јüцисн

CEAM

Routine measurements of formaldehyde in regulatory networks within Europe (EMEP) and USA (EPA Compendium Method TO 11A) rely on sampling with DNPH (2,4-Dinitrophenylhydrazine)-impregnated silica cartridges, followed by analysis with HPLC (High-performance liquid chromatography)

+ Continuous meas.
+ Low LOD
- Complex, either selective or sensitive, cost, RH-dependent

> + Robust method
> + Low LOD ($40 \mathrm{pmol} / \mathrm{mol}$)
> - Offline => Time resolution ~hours

Objectives of the intercomparison: at CiGas IMT NE Douai site - 30/05 -> 08/06 2022

>Evaluation of the metrological performance of measurement techniques: repeatability, limit of detection, linearity, potential drift, etc.
$>$ Determine advantages/drawbacks of the techniques
>Develop recommendations about best practices

What is ACTRIS? https://actris.eu/
The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) is the pan-European research infrastructure (RI) producing high-quality data and information on short-lived atmospheric constituents and on the processes leading to the variability of these constituents in natural and controlled atmospheres

10 instruments => 7 techniques

Generation:

from a cylinder (5.2 ± 0.26
$\mu \mathrm{mol} / \mathrm{mol}$) or from a
permeation system

- Different levels: 2-17nmol/mol
- 1 level: RH=60\%
- WE: Ambient
- w/ \& w/o O

*Certified mixture: VSL => Netherland's National Metrology
Institute
Certified permeator tubes: METAS => Swiss National Metrology
Organization

Set-up of the intercomparison 10 instruments => 7 techniques

Intercomparison: overview of the instruments \& sampling information

Technique	Calibration standard and method	Sampling line from the manifold info	Additional materials/info	Total flow arriving to the instrument ($\mathrm{L} \mathrm{min}^{-1}$)	LOD (pmol/mol)	Time resolution (sec)
Hantzsch fluorimetry 1	Liquid calibration (external)	Teflon tube, $\begin{aligned} & L=1.5 \mathrm{~m}, \\ & \mathrm{ID}=1 / 4^{\prime \prime} \\ & \hline \end{aligned}$	-	1.00	50	90
Microfluidic Hantzsch fluorimetry (microF)	Permeation tube (external)	Teflon, $\mathrm{L}=1.5$ $\mathrm{m}, \mathrm{ID}=1.5 \mathrm{~mm}$ $\left(1 / 8^{\prime \prime}\right)+L=0.8$ $\mathrm{m}, \mathrm{ID}=3.8 \mathrm{~mm}$ (1/4"), inox connectors	particle filter (internal)	0.02	1000	10
DNPH 1	Liquid calibration	$\begin{gathered} \hline \text { PTFE, } \mathrm{L}=1.5 \mathrm{~m}, \\ \mathrm{OD}=1 / 4 \mathrm{C}, \mathrm{ID}=4 \\ \mathrm{~mm} \\ \hline \end{gathered}$	-	1.00	-	3600
Hantzsch fluorimetry 2	Liquid calibration (external)	$\begin{gathered} \text { PFA, } L=3 \mathrm{~m}, \\ \text { ID }=4 \mathrm{~mm} \end{gathered}$	-	1.00	33	5
Hantzsch fluorimetry 3	Liquid calibration (external)	$\begin{gathered} \hline \text { PTFE, L=1.5 m, } \\ \text { OD=1/4", ID=4 } \\ \mathrm{mm} \end{gathered}$	-	0.90	-	60
IR Spectroscopy	Cylinder, dilution multipoint	Sulfinert, L=1.5 $\mathrm{m}, \mathrm{ID}=2.159$ mm	stainless steel $2 \mu \mathrm{~m}$ filter	0.15	300-3500	60
DNPH 2	Liquid calibration	$\begin{gathered} \text { Sulfinert, } \\ \mathrm{L}=\sim 1.5 \mathrm{~m}, \\ \mathrm{ID}=4.575 \mathrm{~mm} \end{gathered}$	-	1.00	43	3600
PTR-MS	Cylinder, dilution \& RH multipoint	$\begin{gathered} \text { Silcosteel, } \\ \mathrm{L}=\sim 1.5 \mathrm{~m}, \\ \mathrm{ID}=4.575 \mathrm{~mm} \end{gathered}$	Heated lines: ~40oC	0.2+3.0	1000-1700	3600
CRDS	Calibration standard and method factory default	$\begin{aligned} & \text { PFA, L=2 m, } \\ & \text { ID }=4 \mathrm{~mm} \end{aligned}$	particle filter	0.30	500 (5min)	120

Schedule of the intercomparison: 01/06 -> 07/06/2022

Intercomparison results : Original time resolution generation with HCHO cylinder at 60% RH

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 16. microF data

Intercomparison results : Original time resolution generation with Permacal at 60\% RH

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 10. microF data

Intercomparison results: Original time resolution Ambient air

Timeseries of original time resolution during the different days of experiments in manifold. microF data corrected with DNPH data

Intercomparison results: Original time resolution w \& w/o O_{3} at 60\% RH

Timeseries of original time resolution during the different days of experiments in manifold. Error bars and shaded areas represent 16. microF data

Intercomparison results: Original time resolution: response time \& memory effect

03-June-2022 (example)

Response time

Intercomparison results

orrelations of DNPH (ref. technique) with theoretical values, and correlations of techniques with ref. technique. Symbols correspond to the respective technique, color coding of symbols corresponds to the date, color coding of the regression lines correspond to each technique. Error bars represent 10. microF data corrected with DNPH data

Conclusions \& perspectives

Evaluation of many online and off-line techniques for formaldehyde measurements at nmol $/ \mathrm{mol}$ levels
> Stable generation of formaldehyde from 2 to $17 \mathrm{nmol} / \mathrm{mol}$ at 60% RH regardless the generation way (cylinder; Permacal)
> DNPH, Hantzsch-fluorimetry-based instruments and CRDS -based instrument: more robust for measuring formaldehyde. Good results with microF after correction
> IR-spectrometry-based instrument not suitable for measuring low amount fractions; PTR-MS: overestimation of the HCHO amount fractions.
> Possible losses of < 4-7\% of HCHO under typical ozone conditions which is inside uncertainties
> Discrepancies between instruments to be addressed (impact of water vapor levels, internal calibrations especially for Hantzchs techniques, lack of a SI traceable calibration standard, etc.)
=> QA/QC measures are crucial to provide high quality formaldehyde measurements for

Thérèse Salameh (therese.salameh@imt-nord-europe.fr)

Thank you for your attention

For more information, visit
www.metclimvoc.eu

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

