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Analytic Lidar/Radar Synthesis
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Analytic Lidar/Radar Synth
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Are we looking at the right quantities?
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Are we looking at the right quantities?

liquid droplets:
D =30 um
N=102m-3
v=0.0ms’
Migtal = 1.5 d

ice particles:
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In the field: Investigating aerosol-cloud-dynamics interaction with LACROS

Leipzig Aerosol .
and Cloud Remote @ Limassol, Cyprus
Observations System
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Ice crystals...
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Supersaturation (g/m?)

Ice crystals...
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Particle Mass [kg]

How to parameterize cloud particles?
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How to parameterize cloud particles?

Critical Number Concentration [m~3]
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Cloud particle’s terminal fall velocity
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How do we measure v.?
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Direct conversion of radar spectra into
particle size distributions

Cloud

Correction of turbulence Radar
broadening and vertical
motion at cloud base

Correction of
turbulence broadening
and vertical motion in
the free atmosphere

Detection (and
Doppler correction) of the

Lidar influence of falling
particles

Detection of turbulent

layers, where the wind -
profiler vertical-velocity Wi r_]d
values are not useable Profiler

[ Buhl, 2015 ]



How do we measure vt?
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Cloud Radar

Wind Profiler

How do we measure vt?
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Signal

How do we measure vt?

(a) Particle scatt.
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How do we measure vt?
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How do we measure vt?
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Height [m]
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How do we measure v, ?
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Direct conversion of radar spectra into
particle size dlstrlbutlons

~
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Direct conversion of radar spectra into
particle size distributions
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Toward LIRAS-ICE...



Algorithm flow chart

Wind profiler

Doppler spectrum

input vector

Terminal fall
velocity

Estimation of shape parameters of PSD Simulations of
(median diameter D and shape parameter y) cloud radar spectra output vector

by comparison with simulated spectra A loar pAmElers

N\

. 4

Lookup-table-based retrieval
[ Bahl, 2019 ]



Forward simulation of lidar and radar

measurements
Parameter Range Range Step  Unit
low high size

p 50 1050 50 hPa

T 180 270 10 K
Ototal 0.05 0.5 0.1 ms™!
D I =I0 FX0 2 LW m

U 1 61 1 -

=> Forward modeling and lookup table
of observables (vt, Z,E, ...)

[ Buhl, 2019 ]



(a)
Simulation of particle spectra and the
creation of the lookup table

Collect a set of i, n, and p, by iterating through all
realistic combinations of i, assuming a gamma size
distribution.

Input:
i, = (particle type, p, T, Otta, D, 1)

¥

N Ntotal=1 Z

»
T 1 T 1

Normals: Size/shape properties:
n.=(Ny, Fq, Z4, E9), p.= (v, W, ZE),

i:

n:

p:

Input parameters
Normalized extensive parameters

Intensive parameters (particle properties)

[ Buhl, 2019 ]



(b)

Look up a result

Create space with a combination of the coordinates
(here: v, and w) and fill with the corresponding vectors
n, and i,.

Calculate the distribution of the matching probability in
(v;, w) space against vector m=(v;,,, wy) measured
with errors.

- Coordinate of most-
probable match

e.

Errors of input parameters

[ Buhl, 2019 ]



(c)

Scale normal vectors and combine with P

Retrieve vectors r; of extensive properties by scaling each
normal vector of the lookup table with measured Z,, and
the simulated Z, so thatr, = n, (Z,,/ Z,).

Plot an element of all vectors r, vs matching probability P
(example for number concentration).

PaA
3
LA

% Uncertainty
0. o’ ' * .
2 B
Most- N
probable
result

[ Buhl, 2019 ]



Forward simulation of lidar and radar
measurements — equivalence of v and Z/E
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Forward simulation of lidar and radar
measurements
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