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Motivation

ACTRIS

CCRES

« We want the vertical profile of horizontal wind
- High resolution (time and vertical)




Motivation

We want the vertical profile of horizontal wind
- High resolution (time and vertical)

How can we obtain the wind profile?

Doppler lidar

- Instrument and basic theory
Measuring wind

- Scanning methods
Measuring turbulence

Practical applications

CCRES Training School, September, 2025




Wind profile from radiosonde

TOTEX
Parachute
< Unwinder
. : Unwinder
, g 30 m string 30 m string 30 m string 30 m string
- e
OPTION 1 OPTION 2 OPTION 3
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Wind profile from radiosonde

Station 10868 at 00 UTC 01 Sep 2025
MUENCHEN-OBERSCHLEISSHEIM, GERMANY
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Wind profile from radiosonde

In situ measurement

Expensive!
- Need helium (or hydrogen if allowed)
- Single use

o ktal
Only 1 or 2 profiles (launches) a day * R
from most stations i

Still a very valuable resource c—
- Reference standard araf =g 08
- Assimilated by NWP

_

CCRES Training School, September, 2025



Remote Sensing methods

 Doppler radar
- Weather radar
- Wind profiler
- MST (mesosphere - stratosphere)

e Sodar
 Doppler lidar

- Direct detection
- Coherent detection

CCRES Training School, September, 2025



Weather radar
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Radar Wind Profiler

ACTRIS

CCRES

Figure 1: Aerial view of the 482 MHz radar wind profiler site at the Meteorologisches Observatorium
Lindenberg. The HALO Photonics Streamline lidar is visible in the foreground.

CCRES Training School, September, 2025




Sodar

Y Beam

Verlical Bearn

X Ogom
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Doppler lidar

 Doppler lidar
- Direct detection
Resonance
Rayleigh-Mie filter
- Heterodyne
Pulsed
Continuous wave

CCRES Training School, September, 2025



Scattering properties

» Rayleigh or Mie

- Depends on particle size vs transmitted wavelength
« Scattering properties of atmospheric particles

- Aerosol, Cloud droplets, Ice, Rain
» Terminal fall velocity

- Depends on particle size and density

CCRES Training School, September, 2025



Scattering properties

10° — : :
- — Mie
- - - Rayleigh . .

10° Y= | Electrical size = 211r / A
& Radar: A=1e-2 m
=10
28 Lidar: A=1e-6 m
D, 0
=10 .
g v\_/a—\‘
Jo)
T 07"t
(V)]

107°F

10‘3J : e .

0 3 4 5 6 7 8 9 10

Electrical size
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Scattering efficiency

Scattering properties

10° }

107"}

-2 !

10

3

Electrical size

- — Mie
- — Rayleigh
N Nl R
4 5 6 7 8 9 | 10

Electrical size = 21ir / A
Lidar: A=1e-6 m

Aerosol: r~5e-7 m

Cloud: r~5e-6 m

Drizzle: r~2e-4 m
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Scattering properties (Mie)
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Terminal fall velocity (Beard et al., 1976)

For water spheres

Fall speed varies
slightly with pressure
and temperature

Aerosol: r~5e-7 m

Cloud: r~5e-6 m

10
1t
o
£ 1
>
‘©
o
Q
Z  0.01}
™
L
0.001
0.0001

10

10

107
Diameter (m)

107 107 Drizzle: r~2e-4 m
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Direct Detection Doppler lidar

 Doppler lidar
- Direct detection
- Resonance
- Rayleigh-Mie filter

Lidar signal vs. etalon transmission
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Direct Detection Doppler lidar

 Doppler lidar
- Direct detection
Resonance
Rayleigh-Mie filter

Double edge filter

The locking filter channel is
to ensure the optimum
balance of Edge 1 and Edge 2
filters (F-P etalons) with the
zero Doppler-shifted laser
signal

C(

Spectrum (arb)

Lidar signal vs. etalon transmission

" D T - 1 P— : ng ™

| Lock

| — Edge 1
Edge 2

— Rayleigh

Aerosol spectrum

/

Rayleigh spectrum

Y

Locking filter

7\ Edge! filter
/ A

Edge2 filter .

Frequency (GHz)




AEOLUS satellite

Direction to Sun

Doppler shift

« -

Mie return signal

Altitude FWHM equivalent to 10 m s*

400 km

Rayleigh return signal
FWHM equivalent to 600 m 5/

| |
Filter A Filter B
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AEOLUS satellite

Mie channel

.................

3 QWP

Fizeau I
interferometer !

ACCD

Doppler shift

QWP 1 3 *-—d

Mie return signal
FWHM equivalent to 10m s*

Fabry-Pérol
interferometer

Rayleigh return signal
FWHM equivalent 1o 600 m 5/

| |
Filter A Filter B
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AEOLUS satellite

ACTRIS

Direction to Sun

Altitude
400 km

Aeolus rayleigh wind velocity (m/s)

CLOME oG s 8 24 40
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Coherent detection

« Detecting Doppler shifts

We can’t detect the frequency of light - but we can detect the “beat”
(1.e. difference) signal between to light beams of slightly different
frequency...

So, we create two beams: a local oscillator (LO) and a power
oscillator (PO). The Local oscillator has frequency fio.

We make sure that the PO has a known frequency offset (i.e. £, 5, =
10 MHz, 100 MHz) from that of the LO, or fro = fro+fofse .

This PO beam goes out into the atmosphere. The light that returns
(scattering off of acrosols) may have been Doppler shifted by f),,,,
for a total frequency offset of

fa :fDopp+ oﬁ%et—l_fLO

CCRES Training School, September, 2025




Coherent detection

The atmospheric return signal and the signal from the local
oscillator are both incident on the detector.

Their electric fields add to create the total electric field incident on
the detector:

Eﬂ — A(l COS(jz]?f;’t + ¢(I)
E,,=4, COS(JQ@(Lot +?0 )
Etot = Aa Cos(jzfy(lrt * ¢)a )+ AL() COS(jng{LOt F ¢L() )

Local Oscillator | Receiver W ,It_*gtrzlc_)ns;s)it;enr;
cos(2trfy+8,) Detector cos(2mf +6,)

l
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Coherent detection

The detector actually “sees’ optical power or:

|E A, COS(j27;7‘:,t T @, )+ 4,0 COS(J'ZZZfLot *tPro MZ

; 2 : B
=4, |cos(j2af .t +@,) + 4,0 |cos(127f ot + 010
+24, 4, cos(j27f,t + ¢, )cos(j27f ot + 9,0

The product of cosines leads to a sum and a difference:

’ = Aa2 COS(jzﬂf;‘t + ¢(1 Xz + AL()zlcos(jzﬂfLOt + ¢L0 Mz

+24,4,, COS(jZ”(.ﬁ: + /10 )t + (¢u T P10 ))
+ 2AHAL() Cos(jzﬂ.(/:: - .fLO )t + (¢a - ¢)L() ))

2

for

tot

|E

Local Oscillator | Receiver fg{::’nsrs’ir;\’;
cos(21fy+8,) Detector Lk b ane g
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Coherent detection

The high frequency (i.e. the sum of LO and atmospheric
frequencies) is too high to detect. The other terms contribute to a
DC offset, and the difference frequency is what gives us our signal:

2

|E =|E, T+ 'EL()l2 +A4,4,, COS(jZf[(f; _fLo)t + (90(; - (DL()))

fot

In terms of power - the optical power on the detector is given by:

Local Oscillator | Receiver ’r\;t"l;':’nsls’:;";
cos (21rfy+8,) Detector 4 St o)

l

By = R, T PLO +2 PaPL() COS(jzﬂ'(f;, o .fL() )t W (¢a ~—®r0 ))

sig
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Coherent detection

The detector current is then given by:

t+ (0, —9,5))

. Uel?vig . . . . .
lsig:( o =i, ¥+ 24010 cos(/27z

Local Oscillator ; Receiver ﬁattrz ?ns‘;:;:;
cos(2mfy+8,) Detector cos(2r.+6)

l

Remember f > f 1o f popp T Jofgee ~Mhz

We know f,.,...so we can find the Doppler shift
frequency.
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Doppler lidar uncertainty

Directly related to SNR (Pearson et al., 2009; O’Connor et al., 2010)

(A?ﬂ\/?_
o P —

1/2
L1 Aa?

Av  signal spectral width

B receiver bandwidth

o Ratio of detector photon count o = SNR
to speckle count (27)/2(Av/B)’
N, Accumulated photon count N, = SNR n M,
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Doppler lidar uncertainty

Directly related to SNR (Pearson et al., 2009; O'Connor et al., 2010)
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Typical Doppler lidar specifications

» Wavelength 1.5 micron

* Low-energy laser (~0.1m]J), high pulse repetition (15kHz) ->
eye-safe

- Coherent heterodyne technique
- Mix signal with local oscillator to get the Doppler shift
* Range 90 m - 10 km, resolution 30-50 m
- Full hemispheric scanning, or limited conical scan
« Continuous operation for months

 Signal-to-noise ratio

» Radial velocity

« Attenuated backscatter
* Depolarisation

CCRES Training School, September, 2025



Network

Inhomogeneous network
- Different instruments
- Research instruments at many locations

Original signal

Must account for instruments operating:
- With different specifications
- In different environments
- With different operating requirements

Cloud screening

2D variance-based cloud screening

Final cloud screening utilising Cook’s distance |
Calculation of the background shape and refilling

W N -

Step detection

Multilevel 1D stationary wavelet decomposition
Peak detection from the wavelet decomposition output

| %

Correction of step changes and background shape

Calculation of the background shape of each step
Correction for the shape and amplitude of the background

Common processing toolbox for all systems

| 3% I

Removal of possible remnant outlier profiles (optional)

Detection of outlier profiles from corrected background
Removal of the detected profiles

BN

Background correction of signal

- HPP“{WW“JNNN‘.—.—.——{

Recalculation of attenuated backscatter coefficients

L 2 N )
© sw, - SR,
u u "
& &l s El & E
5 23 2 23 2 23

CCRES Training Scl



Scan types

Stare
- 8- azimuth angle
- - elevation angle
« Vertical stare (zenith)
- p=90°

CCRES Training School, September, 2025



Scan types

Doppler Beam Swing (DBS)
« 3-beam DBS
1 zenith (vertical) beam
2 off-zenith beams
Orthogonal (e.g. N, E)
6 =90°
¢ = 70° (typically)
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Scan types

Doppler Beam Swing (DBS)
« 4-beam DBS
- 4 off-zenith beams
- 8=90°N,E, S, W
- =70° (typically)
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Scan types

Doppler Beam Swing (DBS)
 5-beam DBS
- 1 zenith beam
- 4 off-zenith beams
- 8=90°N,S,E, W
- =70° (typically)
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Scan types

zenith
» Velocity Azimuth Display C
- VAD ik
- Conical scan
- N off-zenith beams surface
- 8=0:360 zenith
- (p = constant
North
East

-
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Scan types

North
 Plan Position Indicator .

- Scan in azimuth at

constant elevation East
- Low elevation scan

similar to VAD _
- N beams cenin
- 6=0:360
- @ =constant (0 - 5°) North

/ o East

CCRES Training School, September, 2025



Scan types

» Doppler lidar measures radial velocity
- Line-of-sight component only
* Scan type
- Stare (usually vertical stare)
- DBS
- VAD
- PPI
- RHI
- Scan selection based on requirements
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Horizontal winds from radial velocities

To derive vector wind (u, v, w) from radial winds requires at least three
independent line-of-site measurements

Two main techniques
- VAD (Velocity Azimuth Display)
Conical scan at fixed elevation angle
- DBS (Doppler Beam Swinging)
Three or five beams
One vertical, others tilted North, East (South, West)
Four beams (N, S, E, W, no vertical)
All assume homogeneity..

CCRES Training School, September, 2025



Scan types

Doppler Beam Swing (DBS)
- 3-beam DBS

-1 zenith (vertical)
beam

- 2 off-zenith beams

. Orthogonal (e.g. N,
E)

- 6=90°
- =70° (typically)
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Horizontal winds from radial velocities

[ Doppler-Beam-Swinging (DBS) techniques: pointing lidar beam to
vertical, tilted east, and ftilted north.

A y is the off-zenith angle

Vg = usiny + wcosy

Veny = Vvsiny + wcosy

VRZ =W

{

u= (VRE - VRZ COS}’) /Sln)/

v =(Vgy —Vpz cosy) /siny

Viaz: Veer Voy are the vertical, tilted east, and tilted north radial velocities

CCRES Training School, September, 2025




Scan types

zenith
» Velocity Azimuth Display C
- VAD ik
- Conical scan
- N off-zenith beams surface
- 8=0:360 zenith
- (p = constant
North
East

-
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique

ZT“" Radial velocity V, consists of
components from u, v, and w:
w North
v Zonal wind contribution #SInfcosg
~ | 7 Meridional contribution ~vcosfcosg
( > 7 > Ea t . . . -
™l u s Vertical contribution wSsing
/
. /' 0 the azimuth angle, clockwise from North, and
=~ .
’ ¢ the elevation angle.
/
/ GN = 00 ,HE = %0 ,BS = 1800 ’GW = 2700
/
/
G Ve =usinfcos@ +vcosfcos@ +wsing
21
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique

ZT“" Radial velocity V, consists of
components from u, v, and w:
w North
v Zonal wind contribution #SInfcosg
~ | 7 Meridional contribution ~vcosfcosg
( > 7 > Ea t . . . -
™l u s Vertical contribution wSsing
/
. /' 0 the azimuth angle, clockwise from North, and
=~ .
’ ¢ the elevation angle.
/
/ GN = 00 ,HE = %0 ,BS = 1800 ’GW = 2700
/
/
G Ve =usinfcos@ +vcosfcos@ +wsing
21
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique

FMI Halo Doppler lidar operating at Are
Sunday 6 July 2014 00:14:00 PPI 0001/001/01 Elev 30.0°
1

Doppler velocity
10 1.1
1.09
= &3 =3 1.08
= 5 = 1.07
S 25 £ 132
o x .
2ot 4= o0 5 1.04
= -2.5 = 1.03
& g 1.02
@ -5 2 :
& = 1.01
-7.5 y
-10 0.93
1 e _
0 0
Distance east (km) Distance east (km)
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Horizontal winds from radial velocities

» Sinusoidal fit for horizontal wind
Residuals from turbulence and non-turbulent changes in wind

Zenith
A 10
w North
v = 5t
[45]
Q3
- / = " » East £
- ‘G U cr 0 i
/ >
/
S 51
/
/
, 10t - - - -
/ 0 00 180 270 360
Direction [°]
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique

Radial Velocity V,

Azimuth Angle 0

Ve =usinfcos@ + vcosfcos@ + wsing
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Horizontal winds from radial velocities

Wind speed

24 Nov 2011 lime (u1C)
Zonal wind j ) ! ! 2 T T T T T
15 Wind Speed
10 15
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= A 125
2 5 = 10
E
J - -10 =
I 8 £ 1+ BINTS
i @
0 . . . . : T 5
00:00 04:00 08:00 12:00 16:00 20:00 00:00
. ‘ i Time I(UTC) i i 25
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- , h ' B
| e |G e N
g 1 " 5 0 L
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g w | F 2 5 Time (UTC)
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! = e 360
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2 . ; Tine 479 . : 270
Vertical wind —
E
2 =, -
ks E1F 4 180
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Kumpula 1.5 micron Doppler Lidar Time {(UTC)

Wind direction
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Horizontal winds from radial velocities

« DBS
- Very fast - 3,4 or 5 beams

- Min. range determines lowest measurement
« VAD

- Slower - requires more beams (12+)
- Elevation choice determines lowest measurement

- Can cope with missing beams (obstruction)
- Extra information potentially available
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What elevation angle should we scan at?

» Depends!
- What vertical resolution do you require?
- How strong are the winds?
- What is your instrument Nyquist velocity?
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What elevation angle should we scan at?

 Nyquist velocity is usually 20 or 40 m s

I I O O

Max velocity
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What elevation angle should we scan at?

 Nyquist velocity is usually 20 or 40 m s

I N N I

Max velocity
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What elevation angle should we scan at?

 Nyquist velocity is usually 20 or 40 m s

I N N I

Max velocity

« What about measurement uncertainty?
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What elevation angle should we scan at?

 Nyquist velocity is usually 20 or 40 m s

I N N I

Max velocity

« What about measurement uncertainty?
- Typical radial uncertainty <20 cm s

CCRES Training School, September, 2025
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What elevation angle should we scan at?

« Elevation angle 2
- 35 degrees

« Method accounts
- Constant bias

* Method provides
- Explicit uncertainties

10 20 30 40 50 60 70 80

Zenith angle

Teschke, G. and Lehmann, V.: Mean wind vector estimation using the velocity—azimuth
display (VAD) method: an explicit algebraic solution, Atmos. Meas. Tech., 10, 3265-3271,
https://doi.org/10.5194/amt-10-3265-2017, 2017
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What elevation angle should we scan at?

 Nyquist velocity is usually 20 or 40 m s

I N N I

Max velocity

« What about measurement uncertainty?
- Typical radial uncertainty <20 cm s

We have neglected turbulence!

CCRES Training School, September, 2025
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Horizontal winds from radial velocities

« VAD is more robust in turbulent conditions
- Some influence of averaging timescales, and spatial separation

- Recommendation: VAD - Paeschke et al., 2015
- QC through Condition Number together with SNR

- VAD at two elevation angles if possible:
70-75 degrees, slow, 12 beams
« Bestretrieval - lowest uncertainty
5-30 degrees, fast, 24 beams
« High vertical resolution at near ranges
* Representativity

* Uncertainties propagated from radial winds
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Wind uncertainty

e VAD technique - Paeschke et al., 2015
» |dentifies turbulent conditions
* Bias mean wind
* Bias uncertainty estimate
 Quality Control — can you assume homogeneity?
» Goodness of fit
« Condition Number
e ACTRIS: Common methodology
* Recommendation may be location dependent!

Paschke, E., Leinweber, R., and Lenmann, V.: An assessment of the performance of a 1.5 ym
Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech.,
8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015

CCRES Training School, September, 2025




Wind uncertainty
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8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015
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Wind uncertainty
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8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015
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Turbulent motions
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Turbulent properties from Doppler lidar

* Where can we retrieve turbulent properties?
- Requires tracers and good sensitivity
Boundary layer aerosol
In-cloud
« Different methods available
- Which method depends on scan capability

* Uncertainties
- Requires accurate determination of radial velocities
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Turbulent properties from Doppler lidar

« Methods
- Velocity statistics
Spectral width, skewness, kurtosis
- Turbulent tensor: 4-beam DBS
- Radial velocities
Incorporate within stochastic Lagrangian turbulence model
- Kolmogorov hypothesis
Vertical pointing
VAD (conical) scanning

CCRES Training School, September, 2025



Turbulent properties from Doppler lidar

Outer Scale

-5/3 slope

Viscous
sub-range

Non-turbulent

‘ eddies -

Inertial
sub-range

-

Vertical velocity energy density

Frequency

Vertical velocity energy density spectra versus frequency
conforming to Kolmogorov’s hypothesis
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Turbulent properties from Doppler lidar

-

In the inertial sub-range

Quter Scale

(Kolmogorov)

-5/3 slope

S(k) — a82/3k_5/3

Viscous
sub-range

Non-turbulent

‘ eddies ’

Vertical velocity energy density

Frequency

3/2
o2 = 323 2/3 (k—z/s k1—2/3) o= (3_2}] Gvs (k1_2/3 _ k2—2/3)3/2
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Turbulent properties from Doppler lidar

+ Te + o-d a
Observed variance / \ Droplet fall speed distribution
Turbulent term Measurement uncertainty

I

Requires reliable uncertainties!
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar

+ Te + o-d a
Observed variance / \ Droplet fall speed distribution
Turbulent term Measurement uncertainty

I

Requires reliable uncertainties!
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Turbulent properties from

- Background shape and ripple correction
- Manninen et al. (2016, AMT)
- Vakkari et al. (2017, ready to submit)

Gate

- Recalculate all uncertainties
- Crucial for turbulent properties
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(&) 300}
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Time UTC
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Turbulent properties from Doppler lidar

Halo data requires

Uncorrected SNR
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Turbulent properties from Doppler lidar

Halo data requires

Limassol,
27 March 2017
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Turbulence from VAD scans

* Sinusoidal fit for horizontal wind

0.5-2 km

Zenith

S

—

- » East
u

Residuals from turbulence and non-turbulent changes in wind

10" - - - -
0 90 180 270 360
Direction [°]
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Remove non-turbulent residual

« Compare residual from one range gate to the next (same azimuth)
- Correlated residuals indicate large-scale (>> 30 m) flow distortions
- Difference in residuals leaves turbulence and instrumental noise

T

Ve,=V, +R R(r)—R(r+30m)=AR= AV, , +v
10 . . . . 2
c| g q| R=093 o
— E [ P=12010 ey,
IU'J (wp) * ("}
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o — . T
= @
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o
_']O 1 L L _2 | : :
0 90 180 270 360 -2 - 0 1 2
Azimuth [°] R[ms"], 148 ma.s.l.
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2 2
Proxy for turbulence: Oyp = Var(AR;,) —o

« Variance of AR gives a proxy for turbulence

- Variance can be calculated over a full circle (i.e. all azimuthal
angles) or over a limited sector

- Measurement uncertainty contribution o estimated from SNR

Summertime example (Limassol 24 Aug 2013; Vakkari et al., AMT 2015)
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2 2
Proxy for turbulence: Oyup = Var(ARi) — O,

« Variance of AR gives a proxy for turbulence

« Variance can be calculated over a full circle (i.e. all azimuthal angles) or
over a limited sector

 Measurement uncertainty contribution sz estimated from SNR

Summertime example (Limassol 24 Aug 2013; Vakkari et al., AMT 2015)
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Turbulence from low-level VAD scans

(Vakkari et al., 2015)
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Turbulent properties from Doppler lidar

20110519 Turbulent eddy dissipation rate frem ACTUALL Kings College, London
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Turbulent properties from Doppler lidar

20110520 Turbulent eddy dissipation rate frem ACTUALL Kings College, London

Heigtht {km)
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Height (km)

Height (km)

Turbulent properties from Doppler lidar
Cape Cod (Marine)

20120802 Turbulent eddy dissipation rate frem Cape Cod, Massachuszetts, US

(a) Attennated backscatter coefficient - . ! ! !

6 9 12 15 18 21 24!

Turbulent layer at surface throughout diurnal cycle Solar noon
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Evaluate DL turbulence using sonic anemometers

log10(¢)
. 0

* J— uncertainty

20160524 Dissipation rate Lidar

124 m tower
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Evaluate DL turbulence using sonic anemometers
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Combine lidar and radar - winds

2021/06/17

Elevation angles closer
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Distance from site [km]

(a) X-band radar Z, .
2021/0( |74

Clear day, aerosol and a
few insects

Articles / Volume 15, issue 21 / AMT, 15, 6507-6519, 2022

https://doi.org/10.5194/amt-15-6507-2022
® Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
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Combine lidar and radar - winds

Elevation angles closer
to horizontal

Vaisala X-Band weather radar

Vaisala Windcube 400s

Clear air, aerosol and
lots of insects
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Combine lidar and radar - winds

2021/05/17 11:13:08 X-band radar 2.0° PPI
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Combine lidar and radar - winds

Elevation angles closer
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Measurements agree

Articles / Volume 15, issue 21 / AMT, 15, 6507-6519, 2022
https://doi.org/10.5194/amt-15-6507-2022
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Combine lidar and radar - winds
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Combine lidar and radar - winds
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JOYCE (Juelich)
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Combine lidar and radar - turbulence

Vertically-pointing

35 GHz KAZR
Halo Streamline

Velocities agree?

On the unified estimation of turbulence eddy dissipation rate

using Doppler cloud radars and lidars

Paloma Borque §%, Edward Luke, Pavlos Kollias
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Combine lidar and radar - turbulence

Vertically-pointing

35 GHz KAZR
Halo Streamline

Height [km]

Turbulence does!

Log(EDR)

Height [km]

On the unified estimation of turbulence eddy dissipation rate
using Doppler cloud radars and lidars

Paloma Borque §%, Edward Luke, Pavlos Kollias

First published: 12 May 2016 | https://doi.org/10.1002/2015JD024543 | Citations: 53
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WIVERN Satellite

A WInd VElocity Radar
Nephoscope for observing
global winds, clouds

and precipitation

94 GHz Doppler cloud radar
Launch date: 203?
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