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Motivation

• We want the vertical profile of horizontal wind
- High resolution (time and vertical)
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Motivation

• We want the vertical profile of horizontal wind
- High resolution (time and vertical)

• How can we obtain the wind profile?

• Doppler lidar
- Instrument and basic theory

• Measuring wind
- Scanning methods

• Measuring turbulence

• Practical applications
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Wind profile from radiosonde

• In situ measurement
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Wind profile from radiosonde
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Wind profile from radiosonde

• In situ measurement

• Expensive!
- Need helium (or hydrogen if allowed)
- Single use

• Only 1 or 2 profiles (launches) a day
from most stations

• Still a very valuable resource
- Reference standard
- Assimilated by NWP
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Remote Sensing methods

• Doppler radar
- Weather radar
- Wind profiler
- MST (mesosphere – stratosphere)

• Sodar

• Doppler lidar
- Direct detection
- Coherent detection
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Weather radar
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Radar Wind Profiler
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Sodar
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Doppler lidar

• Doppler lidar
- Direct detection

▪ Resonance
▪ Rayleigh-Mie filter

- Heterodyne
▪ Pulsed
▪ Continuous wave
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Scattering properties

• Rayleigh or Mie
- Depends on particle size vs transmitted wavelength 

• Scattering properties of atmospheric particles
- Aerosol, Cloud droplets, Ice, Rain

• Terminal fall velocity
- Depends on particle size and density
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Scattering properties

Electrical size = 2πr / λ

Radar: λ=1e-2 m
Lidar:   λ=1e-6 m
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Scattering properties

Electrical size = 2πr / λ

Lidar:   λ=1e-6 m

Aerosol:   r~5e-7 m

Cloud:      r~5e-6 m

Drizzle:    r~2e-4 m
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Scattering properties (Mie)

extinction

backscatt
er
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Terminal fall velocity (Beard et al., 1976)

For water spheres

Fall speed varies 
slightly with pressure 
and temperature

Aerosol:   r~5e-7 m

Cloud:      r~5e-6 m

Drizzle:    r~2e-4 m
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Direct Detection Doppler lidar

• Doppler lidar
- Direct detection

▪ Resonance
▪ Rayleigh-Mie filter
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Direct Detection Doppler lidar

• Doppler lidar
- Direct detection

▪ Resonance
▪ Rayleigh-Mie filter

Double edge filter

The locking filter channel is 
to ensure the optimum 
balance of Edge 1 and Edge 2 
filters (F-P etalons) with the 
zero Doppler-shifted laser 
signal
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AEOLUS satellite

Filter A Filter B
l l
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AEOLUS satellite

Filter A Filter B
l l
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AEOLUS satellite
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Coherent detection

• Detecting Doppler shifts
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Coherent detection
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Coherent detection
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Coherent detection
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Coherent detection
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Doppler lidar uncertainty

Accumulated photon count

signal spectral width

receiver bandwidth

Ratio of detector photon count
to speckle count

Directly related to SNR (Pearson et al., 2009; O’Connor et al., 2010)
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Doppler lidar uncertainty

Direct detection

Heterodyne detection

Lines indicate choice of 

(signal spectral width)

Directly related to SNR (Pearson et al., 2009; O’Connor et al., 2010)
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Coherent detection
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Typical Doppler lidar specifications

• Wavelength 1.5 micron 
• Low-energy laser (~0.1mJ), high pulse repetition (15kHz) –> 

eye-safe
- Coherent heterodyne technique

- Mix signal with local oscillator to get the Doppler shift
• Range 90 m – 10 km, resolution 30-50 m

- Full hemispheric scanning, or limited conical scan
• Continuous operation for months

• Signal-to-noise ratio
• Radial velocity
• Attenuated backscatter
• Depolarisation
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Network

• Inhomogeneous network
- Different instruments
- Research instruments at many locations

• Must account for instruments operating: 
- With different specifications
- In different environments
- With different operating requirements

Common processing toolbox for all systems
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Scan types

Stare
- θ - azimuth angle 
- φ - elevation angle 

• Vertical stare (zenith)
- φ = 90º

θ
φ
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Scan types

Doppler Beam Swing (DBS)
• 3-beam DBS

- 1 zenith (vertical) beam
- 2 off-zenith beams

▪ Orthogonal (e.g. N, E)  
- θ = 90º
- φ = 70º (typically)

φ

θ
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Scan types

Doppler Beam Swing (DBS)
• 4-beam DBS

- 4 off-zenith beams  
- θ = 90º, N, E, S, W
- φ = 70º (typically)

φ
θ
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Scan types

Doppler Beam Swing (DBS)
• 5-beam DBS

- 1 zenith beam 
- 4 off-zenith beams  
- θ = 90º, N, S, E, W
- φ = 70º (typically)

φ
θ

φ
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Scan types

• Velocity Azimuth Display
- VAD
- Conical scan 
- N off-zenith beams
- θ = 0:360
- φ = constant 

φ

zenith

North

Eastθ

zenith

surface
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Scan types

• Plan Position Indicator
- PPI
- Scan in azimuth at 

constant elevation
- Low elevation scan 

similar to VAD
- N beams
- θ = 0:360
- φ = constant (0 – 5º ) 

zenith

North

Eastθ

North

East



CCRES Training School, September, 2025

Scan types

• Doppler lidar measures radial velocity
- Line-of-sight component only

• Scan type
- Stare (usually vertical stare)
- DBS
- VAD
- PPI
- RHI
- Scan selection based on requirements
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Horizontal winds from radial velocities

• To derive vector wind (u, v, w) from radial winds requires at least three 
independent line-of-site measurements 

• Two main techniques
- VAD (Velocity Azimuth Display)

▪ Conical scan at fixed elevation angle
- DBS (Doppler Beam Swinging)

▪ Three or five beams
▪ One vertical, others tilted North, East (South, West)
▪ Four beams (N, S, E, W, no vertical)

• All assume homogeneity..
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Scan types

Doppler Beam Swing (DBS)
• 3-beam DBS

- 1 zenith (vertical) 
beam

- 2 off-zenith beams
▪ Orthogonal (e.g. N, 

E)  
- θ = 90º
- φ = 70º (typically)

φ

θ
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Horizontal winds from radial velocities
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Scan types

• Velocity Azimuth Display
- VAD
- Conical scan 
- N off-zenith beams
- θ = 0:360
- φ = constant 

φ

zenith

North

Eastθ

zenith

surface
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique
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Horizontal winds from radial velocities

• Sinusoidal fit for horizontal wind
• Residuals from turbulence and non-turbulent changes in wind
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Horizontal winds from radial velocities

Velocity Azimuth Display (VAD) Technique
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Horizontal winds from radial velocities

u

v

w

Wind speed

Wind direction
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Horizontal winds from radial velocities

• DBS
- Very fast – 3, 4 or 5 beams
- Min. range determines lowest measurement 

• VAD
- Slower - requires more beams (12+)
- Elevation choice determines lowest measurement
- Can cope with missing beams (obstruction)
- Extra information potentially available
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What elevation angle should we scan at?

• Depends!
- What vertical resolution do you require?
- How strong are the winds?
- What is your instrument Nyquist velocity?
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What elevation angle should we scan at?

• Nyquist velocity is usually 20 or 40 m s-1

Elevation 0 30 60 75

Max velocity



CCRES Training School, September, 2025

Elevation 0 30 60 75

Max velocity 20 23 40 77

What elevation angle should we scan at?

• Nyquist velocity is usually 20 or 40 m s-1
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Elevation 0 30 60 75

Max velocity 20 23 40 77

What elevation angle should we scan at?

• Nyquist velocity is usually 20 or 40 m s-1

• What about measurement uncertainty?



CCRES Training School, September, 2025

Elevation 0 30 60 75

Max velocity 20 23 40 77

What elevation angle should we scan at?

• Nyquist velocity is usually 20 or 40 m s-1

• What about measurement uncertainty?
- Typical radial uncertainty < 20 cm s-1
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What elevation angle should we scan at?

Teschke, G. and Lehmann, V.: Mean wind vector estimation using the velocity–azimuth 
display (VAD) method: an explicit algebraic solution, Atmos. Meas. Tech., 10, 3265-3271, 
https://doi.org/10.5194/amt-10-3265-2017, 2017

• Elevation angle
- 35 degrees

• Method accounts
- Constant bias

• Method provides
- Explicit uncertainties

Zenith angle
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Elevation 0 30 60 75

Max velocity 20 23 40 77

What elevation angle should we scan at?

• Nyquist velocity is usually 20 or 40 m s-1

• What about measurement uncertainty?
- Typical radial uncertainty < 20 cm s-1

We have neglected turbulence! 
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Horizontal winds from radial velocities

• VAD is more robust in turbulent conditions
- Some influence of averaging timescales, and spatial separation

- Recommendation: VAD - Paeschke et al., 2015
- QC through Condition Number together with SNR
- VAD at two elevation angles if possible:

▪ 70-75 degrees, slow, 12 beams
• Best retrieval – lowest uncertainty

▪ 5-30 degrees, fast, 24 beams
• High vertical resolution at near ranges
• Representativity

• Uncertainties propagated from radial winds
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Wind uncertainty

Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm 
Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 
8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015

• VAD technique - Paeschke et al., 2015
• Identifies turbulent conditions

• Bias mean wind
• Bias uncertainty estimate

• Quality Control – can you assume homogeneity?
• Goodness of fit
• Condition Number

• ACTRIS: Common methodology
• Recommendation may be location dependent!
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Wind uncertainty

Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm 
Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 
8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015

• VAD technique - Paeschke et al., 2015
• Identifies turbulent conditions

• Bias mean wind
• Bias uncertainty estimate

• Qality Control – can you assume homogeneity?
• Goodness of fit
• Condition Number
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Wind uncertainty

Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm 
Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 
8, 2251-2266, https://doi.org/10.5194/amt-8-2251-2015, 2015

• VAD technique - Paeschke et al., 2015
• Identifies turbulent conditions

• Bias mean wind
• Bias uncertainty estimate

• Qality Control – can you assume homogeneity?
• Goodness of fit
• Condition Number
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Turbulent motions
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Turbulent properties from Doppler lidar

• Where can we retrieve turbulent properties? 
- Requires tracers and good sensitivity

▪ Boundary layer aerosol
▪ In-cloud

• Different methods available
- Which method depends on scan capability

• Uncertainties 
- Requires accurate determination of radial velocities
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Turbulent properties from Doppler lidar

• Methods
- Velocity statistics

▪ Spectral width, skewness, kurtosis
- Turbulent tensor: 4-beam DBS
- Radial velocities

▪ Incorporate within stochastic Lagrangian turbulence model 
- Kolmogorov hypothesis

▪ Vertical pointing
▪ VAD (conical) scanning
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Turbulent properties from Doppler lidar

Vertical velocity energy density spectra versus frequency 
conforming to Kolmogorov’s hypothesis
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Turbulent properties from Doppler lidar

k1 k2

In the inertial sub-range 

(Kolmogorov)
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Turbulent properties from Doppler lidar

Observed variance 

Turbulent term Measurement uncertainty

Droplet fall speed distribution

Requires reliable uncertainties!
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar

Observed variance 

Turbulent term Measurement uncertainty

Droplet fall speed distribution

Requires reliable uncertainties!
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Turbulent properties from Doppler lidar

• Background shape and ripple correction
- Manninen et al. (2016, AMT)
- Vakkari et al. (2017, ready to submit)

• Recalculate all uncertainties
- Crucial for turbulent properties
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Turbulent properties from Doppler lidar

Halo data requires pre-processing
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Turbulent properties from Doppler lidar

Halo data requires pre-processing

Limassol, 
27 March 2017
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Turbulence from VAD scans

• Sinusoidal fit for horizontal wind
• Residuals from turbulence and non-turbulent changes in wind

0.5-2 km
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Turbulence from VAD scansRemove non-turbulent residual
• Compare residual from one range gate to the next (same azimuth)

- Correlated residuals indicate large-scale (>> 30 m) flow distortions
- Difference in residuals leaves turbulence and instrumental noise
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Turbulence from VAD scansProxy for turbulence: 
• Variance of ΔR gives a proxy for turbulence

- Variance can be calculated over a full circle (i.e. all azimuthal 
angles) or over a limited sector

- Measurement uncertainty contribution σ2
v estimated from SNR

Summertime example (Limassol 24 Aug 2013; Vakkari et al., AMT 2015)



Proxy for turbulence: 

• Variance of ΔR gives a proxy for turbulence

• Variance can be calculated over a full circle (i.e. all azimuthal angles) or 
over a limited sector

• Measurement uncertainty contribution σ2
v
 estimated from SNR

Summertime example (Limassol 24 Aug 2013; Vakkari et al., AMT 2015)
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Turbulence from low-level VAD scans

(Vakkari et al., 2015)
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar
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Turbulent properties from Doppler lidar

Cape Cod (Marine)

Turbulent layer at surface throughout diurnal cycle Solar noon
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Evaluate DL turbulence using sonic anemometers
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Evaluate DL turbulence using sonic anemometers
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Combine lidar and radar - winds

Elevation angles closer 
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Clear day, aerosol and a 
few insects
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Combine lidar and radar - winds

Elevation angles closer 
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Clear air, aerosol and 
lots of insects
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Combine lidar and radar - winds

Elevation angles closer 
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Rain showers

Complementary!
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Combine lidar and radar - winds

Elevation angles closer 
to horizontal

Vaisala X-Band weather radar
Vaisala Windcube 400s

Measurements agree
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Combine lidar and radar - winds

Elevation angles 
closer to vertical
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Combine lidar and radar - winds

Complementary!
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ACTRIS stations: JOYCE (Juelich)



CCRES Training School, September, 2025

ACTRIS stations: JOYCE (Juelich)
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Combine lidar and radar - turbulence

Vertically-pointing

35 GHz KAZR
Halo Streamline

Velocities agree?
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Combine lidar and radar - turbulence

Vertically-pointing

35 GHz KAZR
Halo Streamline

Turbulence does!
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WIVERN Satellite

A WInd VElocity Radar 
Nephoscope for observing
global winds, clouds 
and precipitation

94 GHz Doppler cloud radar
Launch date: 203?


